Math 10A with Professor Stankova
Quiz 9; Wednesday, 10/25/2017
Section \#107; Time: 11 AM
GSI name: Roy Zhao
Name:

Circle True or False or leave blank. (1 point for correct answer, -1 for incorrect answer, 0 if left blank)

1. True FALSE If rate at which the area A changes is proportional to the radius r, then there exist constants C, D such that $\frac{d A}{d t}=C r+D$.

Solution: There is no constant D.
2. TRUE False In order to show that the integral $0 \leq \int \frac{1}{f(x)} d x$ converges, it suffices to find a function $g(x)$ such that $f(x) \geq g(x)$ and show that $\int \frac{1}{g(x)} d x$ converges.

Solution: This is true because if $f(x) \geq g(x)$, then $\frac{1}{f(x)} \leq \frac{1}{g(x)}$.

Show your work and justify your answers. Please circle or box your final answer.
3. (10 points) (a) (4 points) Suppose that $\frac{d y}{d x}=\sec (y) \sin (x)$. Find a solution such that $y(0)=\pi$.

Solution: We move things to different sides and get that

$$
\frac{d y}{\sec (y)}=\cos (y) d y=\sin (x) d x
$$

Taking the integral of both sides gives

$$
\sin (y)=-\cos (x)+C
$$

Now plugging in $y(0)=0$, we have that

$$
0=\sin (\pi)=-\cos (0)+C=-1+C
$$

and so $C=1$. Therefore, the equation is

$$
\sin (y)=1-\cos (x)
$$

(b) (3 points) Integrate $\int_{2}^{\infty} \frac{1}{(1-x)^{2}} d x$.

Solution: We have that

$$
\int_{2}^{\infty} \frac{1}{(1-x)^{2}} d x=\lim _{t \rightarrow \infty} \int_{2}^{t} \frac{1}{(1-x)^{2}} d x=\left.\lim _{t \rightarrow \infty} \frac{1}{1-x}\right|_{2} ^{t}=\lim _{t \rightarrow \infty} \frac{1}{1-t}-\frac{1}{1-2}=0-(-1)=1
$$

(c) (3 points) Does the integral $\int_{2}^{\infty} \frac{\sin ^{2}(x)}{(1-x)^{2}+e^{-x}} d x$ converge? Hint: Use the previous part.

Solution: We know that $\sin ^{2}(x) \leq 1$ and $(1-x)^{2}+e^{-x} \geq(1-x)^{2}$ so combining these two gives $\frac{\sin ^{2}(x)}{(1-x)^{2}+e^{-x}} \leq \frac{1}{(1-x)^{2}}$. So, we have that

$$
0 \leq \int_{2}^{\infty} \frac{\sin ^{2}(x)}{(1-x)^{2}+e^{-x}} d x \leq \int_{2}^{\infty} \frac{1}{(1-x)^{2}} d x=1
$$

and so the integral converges.

